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Global optimization methods play a significant role in crystallography,

particularly in structure solution from powder diffraction data. This paper

presents the mathematical foundations for a diffusion-equation-based optimiza-

tion method. The diffusion equation is best known for describing how heat

propagates in matter. However, it has also attracted considerable attention as

the basis for global optimization of a multimodal function [Piela et al. (1989). J.

Phys. Chem. 93, 3339–3346]. The method relies heavily on available analytical

solutions for the diffusion equation. Here it is shown that such solutions can be

obtained for two important crystallographic figure-of-merit (FOM) functions

that fully account for space-group symmetry and allow the diffusion-equation

solution to vary depending on whether atomic coordinates are fixed or not. The

resulting expression is computationally efficient, taking the same order of

floating-point operations to evaluate as the starting FOM function measured in

terms of the number of atoms in the asymmetric unit. This opens the possibility

of implementing diffusion-equation methods for crystallographic global

optimization algorithms such as structure determination from powder diffrac-

tion data.

1. Notation not discussed in detail in the paper

h, k are 3 � 1 Miller indices vectors, for instance

h ¼

h

k

l

0
@

1
A:

jhj2 ¼ hTh ¼ h2 þ k2 þ l2 denotes the square modulus of a

Miller indices vector.

xT
n ¼ ðxn yn znÞ is the transpose of the position vector xn for

the nth atom in fractional or Cartesian coordinates as specified

in the text.

N denotes the number of atoms in the unit cell.

Na denotes the number of atoms in the asymmetric unit cell.PN
n 6¼m is shorthand for the summation over n from 1 to N not

including n = m.

fnðhÞ is the form factor for the nth atom.

G denotes the elements of a space group generating the

equivalent atoms in the unit cell.

g is a space-group element.P
g2G is the summation where g runs over all the elements in G.P
g1;g2

is shorthand for
P

g1;g22G ¼
P

g12G

P
g22G.

t0 ¼ 4�2t (both t and t0 are referred to as the deformation

parameter).

2. Introduction

Figures of merit (FOMs) are used in crystallography to

compare observed diffraction data with data calculated from a

model and are also the global optimization metrics for struc-

ture solution. Two common FOM examples are the weighted

sum of the squared differences between observed and calcu-

lated structure-factor amplitudes and the equivalent function

for structure-factor intensities. The dimensionality of the

surface of a crystallographic FOM is the number of degrees of

freedom of the model. Even for systems with only a few

degrees of freedom, the FOM surface is likely to contain a

huge number of local minima and locating the deepest, global

minimum is generally a major challenge. Many methods exist

for solving the global optimization problem of locating the

global minimum of a multi-minimum function. One such

method is the diffusion-equation method (Piela et al., 1989).

Detailed descriptions and applications of this method are

extensively discussed in the literature (e.g. Kostrowicki &

Scheraga, 1992; Wawak et al., 1996; Straub, 1998; Hart et al.,

2000). The surface of a common crystallographic FOM may be

expected to consist of sharp features below an otherwise

featureless landscape. The diffusion-equation method seeks to

broaden these minima to a point where they merge into a

surface that consists of one, or a few, minima. It proceeds by

locating these minima and tracing them back to minima of the



unsmoothed surface by gradually reversing the smoothing

process (note that the position of the minima may move as the

surface becomes smoother). The presumption is that one of

these minima will be the global minimum of the unsmoothed

function.

The potential success of applying the diffusion-equation

method is critically dependent on the computational cost of

evaluating the smoothed function. In this work, we find

analytical solutions to the diffusion equation for the intensity

chi-squared FOM and a restraint FOM. For the intensity chi-

squared FOM, we demonstrate how to take space-group

symmetry fully into account and the effect on the diffusion-

equation solution when the coordinates of the atoms are fixed,

for example, on special positions or planes. Importantly, we

derive an expression for the smoothed FOM that scales

computationally of order O(Na) floating-point operations,

which is the same as for the starting FOM.

3. Solving the diffusion equation

The diffusion-equation method can be expressed succinctly as

the time reversal of solutions of the partial differential equa-

tion

@uðx; tÞ=@t ¼ r2uðx; tÞ;

where the initial condition is uðx; t ¼ 0Þ ¼ FOMðxÞ. Minima of

uðx; tÞ are located for a value of t where uðx; tÞ contains one, or

a few, minima and these minima are traced back to t ¼ 0. In

this work, the coordinates of the vector x are the degrees of

freedom of the FOM, which are atomic coordinates of atoms

in the asymmetric unit.

4. The intensity v2 figure of merit

Here we find the solution to the diffusion equation for the

intensity chi-squared FOM used for the analysis of both

powder diffraction data and single-crystal data. We define

�2
¼
P

h

P
k

ðIobs
h � sIhÞwhkðI

obs
k � sIkÞ; ð1Þ

where h and k are Miller indices, s is a scale factor, and Iobs
h and

Ih are the observed and the calculated intensities, respectively,

for the reflection with Miller indices h. The weight whk

describes the correlation between reflection h and k. For

single-crystal diffraction data all off-diagonal weight elements

are zero and the diagonal elements equal whh ¼ �
�2
h , where �h

represents an estimated standard deviation for the measured

intensity Iobs
h . For powder diffraction data, the off-diagonal

elements of the weight matrix, whk, are in general non-zero

because of reflection overlap.

Further, we write the reflection intensity as

Ih ¼ jFhj
2
¼

PNa

m;n¼1

fmðhÞ fnðhÞ
P

g1;g22G

exp 2�ihTðSg1
xm � Sg2

xnÞ
� �

;

ð2Þ

where Na is the number of atoms in the asymmetric unit and

fnðhÞ is the form factor for the nth atom. G is the space group

of the crystal and g is a member of this group that maps the

position xn onto the position Sgxn ¼ Rgxn þ tg, where Rg and

tg are the rotational and translational components, respec-

tively, of this symmetry operator.

We seek a diffusion-equation solution with the initial

condition uðx; t ¼ 0Þ equal to the FOM in equation (1). The

coordinates of the atoms in the asymmetric unit are initially

taken to be fractional coordinates. At one level, this task is

straightforward since the diffusion equation is linear and the

FOM in equation (1) consists of a sum of terms that all have a

form that is a constant multiplied by a phase factor of the type

� ¼ exp 2�iðhT
1 Sg1
þ . . .þ hT

PSgP
Þxm

� �
: ð3Þ

Knowing that the diffusion-equation solution to expð2�ihxÞ

equals expð�t0jhj2Þ expð2�ihxÞ, it is seen that the diffusion-

equation solution to equation (3) is

uðxm; tÞ ¼ expð�t0jhT
1 Rg1
þ . . .þ hT

PRgP
j
2
Þ�:

The diffusion-equation solution is essentially a phase factor

multiplied by a Debye–Waller like penalty factor that does

not depend on the translation symmetry of the space-group

operators. At a more detailed level, we see for instance from

equation (2) that the expression of these Debye-–Waller like

factors will depend on whether the atomic indices m and n in

the double summation in that equation are equal or not equal.

The full diffusion-equation solution to Ih may be written as

IhðtÞ ¼ exp �2t0jhT
j
2

� � PNa

m6¼n

fmðhÞ fnðhÞ

�
P

g1;g22G

exp 2�ihTðSg1
xm � Sg2

xnÞ
� �

þ
PNa

n¼1

½fnðhÞ�
2 P

g1;g22G

�
exp �t0jhTðRg1

� Rg2
Þj

2
� �

� exp 2�ihTðSg1
� Sg2
Þxn

� ��
: ð4Þ

As written in equation (4) IhðtÞ takes of the order O(N2
a )

floating-point operations to calculate whereas Ih in equation

(2) takes only of the order O(Na) floating-point operations. In

order to write equation (4), and eventually equation (1), in a

form that takes O(Na) operations rather than O(N2
a) opera-

tions, it is useful to introduce the following notation:

�mðh1; h2; . . . ; hP; tÞ

¼ fmðh1Þfmðh2Þ . . . fmðhpÞ

�
P

g1;g2;...;gP

exp
�
2�iðhT

1 Sg1
þ . . .þ hT

PSgP
Þxm

� t0jhT
1 Rg1
þ . . .þ hT

PRgP
j
2
�
: ð5Þ

Apart from the Debye–Waller like penalty factor, �m is

recognized (see, for example, Giacovazzo, 1998) to be a

product of trigonometric structure factors.

In a similar way to how a structure factor is written as a sum

of trigonometric structure factors, introduce

research papers

592 Markvardsen and David � Diffusion equation for figure of merits Acta Cryst. (2010). A66, 591–596



F½h11;...;h1P1
�½h21;...;h2P2

�...½hK1;...;hKPK
� ¼

PNa

m¼1

QK
i¼1

�mðhi1; . . . ; hiPi
; tÞ;

ð6Þ

where h11; . . . ; h1P1
, h21; . . . ; h2P2

and hK1; . . . ; hKPK
are K

Miller index vector sets of sizes P1;P2; . . . ;PK, respectively.

The reason for the square-bracket notation in equation (6) is

to distinguish between say F½h1�½h2 �
and F½h1;h2 �

, which are

identical apart from different t-dependent Debye–Waller like

penalty terms.

Using equation (5) the equation in (4) can be written as

IhðtÞ ¼
PNa

m¼1

PNa

n6¼m

�mðh; tÞ�nð�h; tÞ þ
PNa

m¼1

�mðh;�h; tÞ: ð7Þ

The double summation in equation (7) takes of the order

O(N2
a) floating-point operations to calculate, but rewriting this

term as

PNa

m¼1

PNa

n6¼m

�mðh; tÞ�nð�h; tÞ ¼
PNa

m¼1

�mðh; tÞ
PNa

n¼1

�nð�h; tÞ

�
PNa

m¼1

�mðh; tÞ�mð�h; tÞ ð8Þ

takes of the order O(Na). Using equation (8) and the notation

in equation (6), we see that the diffusion-equation solution to

Ih can be written as

IhðtÞ ¼ jF½h�j
2
þ F½h;�h� � F½h�½�h�:

Finding the diffusion-equation solution to equation (1) also

requires finding the solution to

IhIk ¼
PNa

m;n;p;q¼1

fmðhÞ fnðhÞ fpðkÞ fqðkÞ

�
P

g1;g2;g3;g4

exp
�
2�i½hTðSg1

xm � Sg2
xnÞ

þ kTðSg3
xp � Sg4

xqÞ�
�
: ð9Þ

Whether the atomic indices m, n, p and q in equation (9) are

different or equal gives rise to different Debye–Waller like

penalty terms, as was the case for Ih in equation (7). Denoting

Ihk � IhIk, then equation (10) lists the diffusion-equation

solution to Ihk:

IhkðtÞ ¼
P

m¼n¼p¼q

�mðh;�h; k;�k; tÞ

þ
P

m¼n¼p;m 6¼q

�mðh;�h; k; tÞ�qð�k; tÞ

þ
P

m¼n¼q;m 6¼p

�mðh;�h;�k; tÞ�pðk; tÞ

þ
P

m¼n;p¼q;m 6¼p

�mðh;�h; tÞ�pðk;�k; tÞ

þ
P

m¼n;m 6¼p;m 6¼q;p6¼q

�mðh;�h; tÞ�pðk; tÞ�qð�k; tÞ

þ
P

n¼p¼q;m 6¼n

�nð�h; k;�k; tÞ�mðh; tÞ

þ
P

m¼p¼q;m 6¼n

�mðh; k;�k; tÞ�nð�h; tÞ

þ
P

p¼q;m 6¼n;m 6¼p;n 6¼p

�pðk;�k; tÞ�mðh; tÞ�nð�h; tÞ

þ
P

m¼p;n¼q;m 6¼n

�mðh; k; tÞ�nð�h;�k; tÞ

þ
P

m¼q;n¼p;m 6¼n

�mðh;�k; tÞ�nð�h; k; tÞ

þ
P

m¼p;m 6¼n;m 6¼q;n 6¼q

�mðh; k; tÞ�nð�h; tÞ�qð�k; tÞ

þ
P

n¼q;m 6¼n;m 6¼p;n 6¼p

�nð�h;�k; tÞ�mðh; tÞ�pðk; tÞ

þ
P

m¼q;m 6¼n;m 6¼p;n 6¼p

�mðh;�k; tÞ�nð�h; tÞ�pðk; tÞ

þ
P

n¼p;m 6¼n;m 6¼q;n 6¼q

�nð�h; k; tÞ�mðh; tÞ�qð�k; tÞ

þ
P

m;n;p;q all different

�mðh; tÞ�nð�h; tÞ�pðk; tÞ�qð�k; tÞ:

ð10Þ

It costs of the order OðN4
aÞ to evaluate the last term in

equation (10). Each of the terms in equation (10) can be

rewritten such that the computational cost of calculating it

takes of the order O(Na) to compute using expressions similar

to equation (8). For example, for the second, third, fourth,

sixth, seventh, ninth and tenth terms, the expression in equa-

tion (8) is directly applicable. For a triple summation term

such as the second from last term in equation (10), we can useP
n¼p;m 6¼n;m 6¼q;n 6¼q

�nð�h; k; tÞ�mðh; tÞ�qð�k; tÞ

¼ F½h�F½�h;k�F½�k� � F½h�½�h;k�F½�k�

� F½h�½�k�F½�h;k� � F½h�F½�h;k�½�k� þ 2F½h�½�h;k�½�k�:

Carrying this analysis through for all terms in equation (10)

and inserting IhkðtÞ and IhðtÞ into the FOM function in equa-

tion (1), we eventually find the diffusion-equation solution to

equation (1), which for example can be grouped into the

following formula:

�2
ðtÞ ¼ s2

P
h;k

whk

�
F ivðh; k; tÞ

þ F½k�F
iiiðh;�k; tÞ þ c:c:

� �
þ F½h�F

iiiðk;�h; tÞ þ c:c:
� �

þ jF½h�F½k� þ F iiðh; k; tÞj2 þ jF½h�F½�k� þ F iiðh;�k; tÞj2

� 2jF½h�j
2
jF½k�j

2
þ IhðtÞ � Iobs

h =s
� �

IkðtÞ � Iobs
k =s

� ��
;

ð11Þ

where c.c. stands for complex conjugate, F iiðh; k; tÞ = F½h;k� �

F½h�½k�, F iiiðh; k; tÞ = F½h;�h;k� � F½h;k�½�h� � F½�h;k�½h� � F½h;�h�½k� +

2F½h�½�h�½k� and F ivðh; k; tÞ ¼ F½h;�h;k;�k� � 6F½h�½�h�½k�½�k� �

F½h;�h;�k�½k� + 2F½h;�k�½�h�½k� + 2F½�h;�k�½h�½k� � F½h;�h;k�½�k� +

2F½�h;k�½h�½�k� + 2F½h;k�½�h�½�k� � F½h�½�h;k;�k� + 2F½h;�h�½k�½�k� +

2F½h�½�h�½k;�k� � F½h;k;�k�½�h� � F½h;�h�½k;�k� � F½h;k�½�h;�k� �

F½h;�k�½�h;k� . This formula takes of the order O(Na) to evaluate.

4.1. The case of fixed atoms and coordinate transformations

The atom position vector xm and space-group operator Sg

are expressed with respect to a crystal coordinate system in

equation (5). Using a notation similar to that found in

Giacovazzo et al. (2002),
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x0m ¼ Mmxm; ð12Þ

equation (12) relates the coordinates of atom n between two

different coordinate systems as defined by the coordinate

transformation matrix Mm. If, for example, the columns of Mm

equal the lattice vectors of the unit cell, then equation (12)

represents the transformation from fractional to Cartesian

coordinates. The gradient of the phase term in equation (3)

with respect to x0m, rather than xm, is

r0� ¼ r�M�1
m ¼ 2�iðhT

1 Sg1
þ . . .þ hT

PSgP
ÞM�1

m �: ð13Þ

If Mm represents the transformation from fractional to

Cartesian coordinates, the rows of M�1
m equal the reciprocal-

lattice vectors.

Using equation (13) it is seen that the diffusion-equation

solution with respect to x0m is obtained by substituting equa-

tion (5) with

�mðh1; h2; . . . ; hP; t0Þ ¼ fmðh1Þ fmðh2Þ . . . fmðhpÞ

�
P

g1;g2;...;gP

exp
�
2�iðhT

1 Sg1
þ . . .þ hT

PSgP
Þxm

� t0j½hT
1 Rg1
þ . . .þ hT

PRgP
�M�1

m j
2
�
: ð14Þ

It is perhaps surprisingly easy to incorporate into the

diffusion-equation solution in equation (11) the concept of

atomic coordinates that are either fixed or not fixed. Simply

substitute each atom xm by ðPm þ PmÞxm, where Pm and Pm are

both diagonal matrices with diagonal elements that are either

zero or one and their sum is the identity matrix. Pmxm is

interpreted as the component of xm that is not fixed (allowed

to vary) and Pmxm is the component which stays constant (is

fixed). Since Pmxm is treated as a constant, this component will

not contribute to the Debye–Waller like penalty factor and the

diffusion-equation solution taking into account fixed coordi-

nates is obtained by substituting equation (14) with

�mðh1; h2; . . . ; hP; t0Þ ¼ fmðh1Þ fmðh2Þ . . . fmðhpÞ

�
P

g1;g2;...;gP

exp
�
2�iðhT

1 Sg1
þ . . .þ hT

PSgP
Þxm

� t0j½hT
1 Rg1
þ . . .þ hT

PRgP
�M�1

m Pmj
2
�
:

The matrices Pm and Pm for an atom can be used to fix the mth

atom to a point or an arbitrary line or plane when combined

with suitable transformation matrices M�1
m . Consider, for

example, the case of an atom fixed to move along the direction

[110] relative to a crystal coordinate system. Choose for the

mth atom

Mm ¼

2�1=2 �2�1=2 0

2�1=2 2�1=2 0

0 0 1

0
@

1
A:

This corresponds to rotating the crystal counterclockwise by

45� or rotation of the coordinate system by 45� clockwise

resulting in the y axis now being positioned along the [110]

direction in the old coordinate system.

Pm ¼

0 0 0

0 1 0

0 0 0

0
@

1
A

then has the effect that the diffusion-equation solution only

includes a diffusion penalty contribution for the mth atom

along the direction [110] measured in the crystal coordinate

system.

4.2. Calculating v2(t)

The time it takes to calculate equation (11) is proportional

to the number of atoms in the asymmetric unit multiplied by

the number of data points. The choice of space group and the

type of constraints applied (projection matrices) in general

affect the evaluation time of equation (11). Here a procedure

for calculating equation (11) is discussed.

For example, we need to calculate F½h� ¼
P

m �mðh; tÞ,

where

�mðh; tÞ ¼
P

g

expð2�ihTSgxmÞ fmðhÞ expð�t0jhTRgM�1
m Pmj

2
Þ

� �
:

ð15Þ

An approach is to first calculate for each reflection h the

squared lengths jhTRgM�1
m Pmj

2 for all m. This only needs to be

performed once for a given data set. For a given value of the t

parameter, the factors in the square bracket in equation (15)

are what remain to recalculate the phases for each new

configuration of the atoms. Equation (11) requires, in addition

to �mðh; tÞ, the evaluation of �mðh; k; tÞ, �mðh;�h; k; tÞ and

�mðh;�h; k;�k; tÞ. �mðh; k; tÞ reads

�mðh; k; tÞ

¼
P

g1;g2

�
exp 2�iðhTSg1

þ kTSg2
Þxm

� �
� fmðhÞ fmðkÞ expð�t0j½hTRg1

þ kTRg2
�M�1

m Pmj
2
Þ

� ��
:

ð16Þ

Once a set of phases, expð2�ihTSgxmÞ, has been calculated,

evaluating expð2�iðhTSg þ kTSg0 ÞxmÞ takes at most one

complex multiplication. A two-dimensional array of time-

dependent factors, in the square brackets in equation (16),

needs to be evaluated; again, this only needs to be done

once for a given value of the deformation parameter.

Similar considerations can be made for the calculation of

the trigonometric structure factors �mðh;�h; k; tÞ and

�mðh;�h; k;�k; tÞ, where the latter requires a four-

dimensional array of time-dependent factors. Once these have

been calculated, evaluating F ii, F iii, F iv and �2ðtÞ in equation

(11) is straightforward.

4.3. The case of P1 symmetry and single-crystal data

For the special case of space group P1 and all off-diagonal

weight matrix elements equal to zero, the diffusion-equation

solution in equation (11), allowing atomic coordinates to be

fixed, reduces to

research papers

594 Markvardsen and David � Diffusion equation for figure of merits Acta Cryst. (2010). A66, 591–596



�2ðtÞ ¼ s2
P

h

whh

�
F ivðh; h; tÞ þ 2 F½h�F

iiiðh;�h; tÞ þ c:c:
� �

þ jðF½h�Þ
2
þ F iiðh; h; tÞj2 þ ½IhðtÞ�

2
� 2jF½h�j

4

þ IhðtÞ � Iobs
h =s

� �2�
; ð17Þ

where c.c. stands for complex conjugate and

�m ¼ expð�t0jhTM�1
m Pmj

2
Þ;

F iv
ðh; h; tÞ ¼ �

PN
m¼1

f 4
mð1� �

2
mÞ

4;

F iii
ðh;�h; tÞ ¼ �

PN
m¼1

f 3
m expð�2�ihTxmÞ�mð1� �

2
mÞ

2;

F iiðh;�h; tÞ ¼
PN
m¼1

f 2
mð1� �

2
mÞ;

F ii
ðh; h; tÞ ¼

PN
m¼1

f 2
m expð4�ihTxmÞ�

2
mð�

2
m � 1Þ;

F½h� ¼
PN
m¼1

fm expð2�ihTxmÞ�m;

IhðtÞ ¼ jF½h�j
2
þ F ii
ðh;�h; tÞ:

It is worth considering the nature of the P1 single-crystal �2

function at the two limits of the diffusion process when t! 0

and t!1, and where the constraint matrices are all identical

and equal to the identity matrix, implying that �m ¼ � for all

the atoms. For � ¼ 1, that is for t = 0, equation (17) reduces to

the conventional single-crystal �2 function given by

�2
ðt ¼ 0Þ ¼ s2

P
h

whhðIh � Iobs
h =sÞ

2:

For � ¼ 0, i.e. the extreme condition of the diffusion equation

corresponding to an infinite time, t ! 1, equation (17)

reduces to

�2ðt ¼ 1Þ ¼ s2
P

h

whh

� PN
m¼1

f 2
m

	 
2

�
PN
m¼1

f 4
m

þ
PN
m¼1

f 2
m � Iobs

h =s

	 
2�
:

The most noticeable term in this equation is

ð
PN

m¼1 f 2
m � Iobs

h =sÞ
2. The intensities Iobs

h are the Fourier

components of a Patterson function whose maxima are located

at the interatomic vector positions, (xm � xm0), and the termPN
m¼1 f 2

m is the Fourier transform of a constant featureless

Patterson function. The diffusion equation has effectively

rendered the Patterson function featureless and the analytical

time reversal of the diffusion method smoothly recreates the

Patterson function. The nature of the first non-constant

addition to the Patterson function as t is reduced from infinity

is found by first isolating the non-constant terms in equation

(17) to lowest order in �:

�2ðt ¼ largeÞ ¼ �2ðt ¼ 1Þ þ 2s2
P

h

whh�
2

�
PN
m¼1

PN
n 6¼m

fm fn 2
PN
p¼1

f 2
p � f 2

m � f 2
n � Iobs

h =s

" #

� cos 2�ihT xm � xnð Þ
� �

:

For small �, only the longest d-spacing reflections will

contribute and thus the first feature that appears to sponta-

neously break the featureless symmetry of the t ¼ 1

Patterson map is associated with the first reflection. In the

other limit, as t is increased away from zero, the first blurring

of equation (17) scales, in many places, as (1 � �2) and can be

considered to be closely similar to an additional Debye–Waller

term. Thus the analytical time reversal of equation (17) is

similar to the least-squares fitting of a Patterson function that

is initially featureless, develops structure associated with the

lowest-resolution reflections and finally sharpens into the

detailed Patterson function that is associated with the

observed diffraction data.

5. Restraints

A commonly applied restraint in crystallography is the bond-

length restraint, which favours certain distances between two

atoms over others. Consider the following restraint function

used by Kostrowicki & Scheraga (1992) in an application of

the diffusion-equation method:

f ðxÞ ¼ wnmðjxn � xmj
2
� x2

nmÞ
2; ð18Þ

where x denotes the collective Cartesian coordinates of the

mth and nth atoms, and jxn � xmj equals the distance between

atoms n and m. This function restrains the distance between

these two atoms with a weight parameter given by wnm and

preferred distance xnm. The diffusion-equation solution with

uðx; t ¼ 0Þ ¼ f ðxÞ is (Kostrowicki & Scheraga, 1992)

uðx; tÞ ¼ wnmf½jxn � xmj
2
� ðx2

nm � 20tÞ�2 þ 16x2
nmt � 160t2g:

ð19Þ

The expression in equation (19) can readily be extended to the

scenario where one or both of the two atoms in equation (18)

are fixed at a point, to a line or a plane. This is achieved using

the matrices introduced in x4.1 to fix coordinates and the

resulting diffusion-equation solution is

uðx; tÞ ¼ wnm

�
fjxn � xmj

2
� ½x2

nm � 2tTrðPnmÞ�g
2

þ 8tðxn � xmÞ
TPnmðxn � xmÞ þ 20t2TrðPnmÞ

þ 16t2TrðPnPmÞ � 12t2
P3

i¼1

½ðPnÞ
2
ii þ ðPmÞ

2
ii�
�
; ð20Þ

where Pnm ¼ Pn þ Pm, ðPnÞii is the ith diagonal element of Pn

and TrðPnmÞ is the trace of the matrix Pnm. Notice that the last

three terms in equation (20) do not depend on x.

6. Conclusions

Analytical solutions to the diffusion-equation method for

FOMs of interest to crystallography were derived which fully

account for space-group symmetry and constraint information

for the first time. This provides the framework for applying the

diffusion-equation method to FOMs relevant to crystal-

lography using information available about symmetry and

constraints.
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